Acquisition and Representation of Material Appearance for Editing and Rendering

نویسنده

  • Jason Davis Lawrence
چکیده

Providing computer models that accurately characterize the appearance of a wide class of materials is of great interest to both the computer graphics and computer vision communities. The last ten years has witnessed a surge in techniques for measuring the optical properties of physical materials. As compared to conventional techniques that rely on hand-tuning parametric light reflectance functions, a data-driven approach is better suited for representing complex real-world appearance. However, incorporating these representations into existing rendering algorithms and a practical production pipeline has remained an open research problem. One common approach has been to fit the parameters of an analytic reflectance function to measured appearance data. This has the benefit of providing significant compression ratios and these analytic models are already fully integrated into modern rendering algorithms. However, this approach can lead to significant approximation errors for many materials and it requires computationally expensive and numerically unstable non-linear optimization. An alternative approach is to compress these datasets, using algorithms such as Principal Component Analysis, wavelet compression or matrix factorization. Although these techniques provide an accurate and compact representation, they do have several drawbacks. In particular, existing methods do not enable efficient importance sampling for measured materials (and even some complex analytic models) in the context of physically-based rendering systems. Additionally, these representations do not allow editing. In this thesis, we introduce techniques for acquiring and representing real-world material appearance that address these research challenges. First, we introduce the Inverse Shade Trees (IST) framework. This is a conceptual framework for representing high-dimensional measured appearance data as a tree-structured collection of simpler masks and functions. We use it to provide an intuitive representation of the Spatially-Varying Bidirectional Reflectance Distribution Function (SVBRDF) that is automatically computed from measured data. Like other data-driven techniques, ISTs are more accurate than fitting parametric BRDFs to measured appearance data, but are intuitive enough to support direct editing. We also introduce a factored model of the BRDF optimized to support efficient importance sampling in the context of global illumination rendering. We demonstrate that our technique provides more efficient sampling than previous methods that sample a best-fit parametric model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sparse Parametric Mixture Model for BTF Compression, Editing and Rendering

Bidirectional texture functions (BTFs) represent the appearance of complex materials. Three major shortcomings with BTFs are the bulky storage, the difficulty in editing and the lack of efficient rendering methods. To reduce storage, many compression techniques have been applied to BTFs, but the results are difficult to edit. To facilitate editing, analytical models have been fit, but at the co...

متن کامل

State of the Art in Artistic Editing of Appearance, Lighting, and Material

Mimicking the appearance of the real world is a longstanding goal of computer graphics, with several important applications in the feature-film, architecture and medical industries. Images with well-designed shading are an important tool for conveying information about the world, be it the shape and function of a CAD model, or the mood of a movie sequence. However, authoring this content is oft...

متن کامل

Tutorial Notes for the DAGM 2001 A Framework for the Acquisition , Processing and Interactive Display of High Quality 3 D Models Research

This tutorial highlights some recent results on the acquisition and interactive display of high quality 3D models. For further use in photorealistic rendering or object recognition, a high quality representation must capture two different things: the shape of the model represented as a geometric description of its surface and on the other hand the appearance of the material or materials it is m...

متن کامل

Representation of a nanoscale heterostructure dual material gate JL-FET with NDR characteristics

In this paper, we propose a new heterostructure dual material gate junctionless field-effect transistor (H-DMG-JLFET), with negative differential resistance (NDR) characteristic. The drain and channel material are silicon and source material is germanium. The gate electrode near the source is larger. A dual gate material technique is used to achieve upward band bending in order to access n-i-p-...

متن کامل

Data-driven approaches for interactive appearance editing

This thesis proposes several techniques for interactive editing of digital content and fast rendering of virtual 3D scenes. Editing of digital content such as images or 3D scenes is difficult, requires artistic talent and technical expertise. To alleviate these difficulties, we exploit data-driven approaches that use the easily accessible Internet data (e. g., images, videos, materials) to deve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006